
MooseFS 3.0 Storage Classes Manual
Core Technology Development & Support Team

June 8, 2016

c© 2015-2016 v. 1.4.0
Piotr Robert Konopelko, Core Technology Development & Support Team.
All rights reserved.

Proofread by Agata Kruszona-Zawadzka
Coordination & layout by Piotr Robert Konopelko.

Please send corrections to Piotr Robert Konopelko – peter@mfs.io.

1

mailto:peter@mfs.io

Contents

1 Introduction to Storage Classes functionality in MooseFS 3.0 4
1.1 What is a Storage Class? . 4
1.2 What are labels? . 4

2 How to use Storage Classes? 5
2.1 Machines configuration . 5
2.2 Example of MooseFS installation without Storage Classes 5
2.3 Labelling Chunkservers . 6
2.4 Creating Storage Classes . 8
2.5 Listing Storage Classes . 9
2.6 Assigning Storage Class to files / directories . 10

2.6.1 Creating files . 10
2.6.2 Filesystem balance with Storage Classes applied 11

2.7 Creation, keep, archive labels . 11
2.7.1 Synopsis . 12
2.7.2 Creation labels . 12
2.7.3 Keep labels . 12
2.7.4 Archive labels . 12
2.7.5 How to set it? . 12

2.8 Chunkserver states . 13
2.9 Chunk creation modes . 14
2.10 Preferred labels during read/write (in mfsmount) 15

3 Storage Classes tools 16
3.1 MooseFS Storage Class administration tool – mfsscadmin 16

3.1.1 Synopsis . 16
3.1.2 Description . 16
3.1.3 Commands . 16
3.1.4 Options . 17
3.1.5 Labels expressions . 17
3.1.6 Creation modes . 18
3.1.7 Predefined Storage Classes . 19

3.2 MooseFS Storage Class management tools – mfssclass 19
3.2.1 Synopsis . 19
3.2.2 Description . 19
3.2.3 General options . 19
3.2.4 Inheritance . 20

2

4 Common use scenarios 21
4.1 Scenario 1: Two server rooms (A and B) . 21
4.2 Scenario 2: SSD and HDD drives . 22
4.3 Scenario 3: Two server rooms (A and B) + SSD and HDD drives 24
4.4 Scenario 4: Creation, Keep and Archive modes 26

3

Chapter 1

Introduction to Storage Classes
functionality in MooseFS 3.0

1.1 What is a Storage Class?

Since MooseFS 3.0 goal has been extended to Storage Class. Storage Classes allow you to specify
on which Chunkservers copies of files should be stored. Storage Classes are defined using label
expressions.

To maintain compatibility with standard goal semantics, there are predefined Storage Classes
from 1 to 9 that, unless changed (see Section 3.1.7: Predefined Storage Classes of this
manual or man mfsscadmin), behave like goals from MooseFS 2.0 or 1.6. Goal tools simply
work only on these classes.

1.2 What are labels?

Labels are letters (A-Z – 26 letters) that can be assigned to Chunkservers. Each chunkserver
can have multiple (up to 26) labels.

Labels expression is a set of subexpressions separated by commas, each subexpression specifies
the storage schema of one copy of a file. Subexpression can be: an asterisk or a label schema.

Label schema can be one label or an expression with sums, multiplications and brackets. Sum
means a file can be stored on any chunkserver matching any element of the sum (logical or).
Multiplication means a file can be stored only on a chunkserver matching all elements (logical
and). Asterisk means any chunkserver.

Identical subexpressions can be shortened by adding a number in front of one instead of repeating
it a number of times.

For more information about labels expressions, refer to Section 3.1.5: Labels expressions
of this manual.

4

Chapter 2

How to use Storage Classes?

2.1 Machines configuration

In this example we have MooseFS 3.0 installed on 11 machines:

• ts02, ts03 – Master Servers

• ts04..ts12 – Chunkservers

Assumption:

• On the MooseFS instance there is some initial data stored with goal 2 (Storage Class 2).

2.2 Example of MooseFS installation without Storage Classes

To run MooseFS without any user-defined Storage Classes, you don’t have to make any changes
in configuration. Just install MooseFS with default configuration. The process is described in
”MooseFS Step by Step Tutorial”.

5

The picture below shows the discussed installation:

If labels on Chunkservers are not set up, the system is balanced like MooseFS 2.0. The image
below presents system balance at this point:

2.3 Labelling Chunkservers

To add labels to the system, i.e. assign them to Chunkservers, you need to edit their configura-
tion files (/etc/mfs/mfschunkserver.cfg). Open the file, uncomment the following line and
after the equation character type labels you want to set on specific Chunkserver. For example
to set label A on Chunkservers ts04, ts05, ts06 and ts07, their configuration should look like
this:

6

[...]

labels string (default is empty - no labels)

LABELS = A

[...]

The next step is to ”inform” the Chunkserver, that the Configuration file has changed. Issue
the command:

root@chunkserver :~# service moosefs -pro -chunkserver reload

or:

root@chunkserver :~# mfschunkserver reload

Similarly set label B for Chunkservers ts08, ts09, ts10, ts11, ts12.

After this step in CGI monitor you can observe, that Chunkservers ts04..ts07 have label A and
Chunkservers ts08..ts12 – label B:

Notice: If you want to set more than one label for a Chunkserver, just enter appropriate labels in
configuration file (/etc/mfs/mfschunkserver.cfg). MooseFS supports schemes listed below,
so you can choose the one, which fits for you the best, e.g.:

[...]

labels string (default is empty - no labels)

LABELS = XYZ

[...]

or:

[...]

labels string (default is empty - no labels)

LABELS = X, Y, Z

[...]

or:

[...]

labels string (default is empty - no labels)

LABELS = X Y Z

[...]

7

The picture below presents current system configuration:

2.4 Creating Storage Classes

In order to create a Storage Class on MooseFS, use the mfsscadmin tool. Below you can find a
simple example, you can read a full description of mfsscadmin usage in Chapter 3: Storage
Classes tools or in man mfsscadmin.

Let’s create a storage class named sclass1:

First of all, mount MooseFS:

Listing 2.1: Mounting MooseFS (Linux only)
root@client :~# mount -t moosefs mfsmaster.test.lan: /mnt/mfs

mfsmaster 192.168.1.2 - found leader: 192.168.1.3

mfsmaster accepted connection with parameters: read -write ,restricted_ip ,admin ;

root mapped to root:root

root@client :~#

or

Listing 2.2: Mounting MooseFS (universal)
root@client :~# mfsmount -H mfsmaster.test.lan /mnt/mfs

mfsmaster 192.168.1.2 - found leader: 192.168.1.3

mfsmaster accepted connection with parameters: read -write ,restricted_ip ,admin ;

root mapped to root:root

root@client :~#

8

Then, navigate to mounted file system:

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs#

Let’s assume, you want to have your files stored in 2 copies on Chunkservers labelled as A.
Create a Storage Class with appropriate definition:

root@client :/mnt/mfs# mfsscadmin create 2A sclass1

create ; 0

storage class make sclass1: ok

root@client :/mnt/mfs#

It means that every file with sclass1 assigned will be stored in two copies: one will be kept on
Chunkserver with label A, another one – on another Chunkserver with label A.

Similarly, create a Storage Class sclass2, which keep 2 copies on Chunkservers labelled as B:

root@client :/mnt/mfs# mfsscadmin create 2B sclass2

create ; 0

storage class make sclass2: ok

root@client :/mnt/mfs#

Notice: You don’t have to navigate to mounted file system to create a Storage Class – it is also
possible to do it from any location. In such case just let mfsscadmin tool know, where MooseFS
is mounted (in first parameter), e.g.:

root@client :~# mfsscadmin /mnt/mfs create 2B sclass2

It applies to all Storage Classes tools.

2.5 Listing Storage Classes

Now, let’s check, if the classes has been properly created and are available to use:

root@client :/mnt/mfs# mfsscadmin list

list ; 1

1

2

3

4

5

6

7

8

9

sclass1

sclass2

root@client :/mnt/mfs#

You can also see more detailed view by issuing the command with -l switch:

root@client :/mnt/mfs# mfsscadmin list -l

list ; 1

[...]

sclass1 : 2 ; admin_only: NO ; create_mode: STD ; create_labels: [A] , [A] ;

keep_labels: [A] , [A]

sclass2 : 2 ; admin_only: NO ; create_mode: STD ; create_labels: [B] , [B] ;

keep_labels: [B] , [B]

root@client :/mnt/mfs#

9

2.6 Assigning Storage Class to files / directories

There are several tools to manage Storage Classes assignment to files, directories etc.: mfsgetsclass,
mfssetsclass, mfscopysclass, mfsxchgsclass, mfslistsclass. You can find out more about
them in Section 3.2: MooseFS Storage Class management tools – mfssclass or by is-
suing man mfssclass.

Now it’s time to store some data on this MooseFS instance. Create two directories, let’s say
dataX and dataY.

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs# mkdir dataX

root@client :/mnt/mfs# mkdir dataY

root@client :/mnt/mfs#

Next, assign Storage class sclass1 to /mnt/mfs/dataX:

root@client :/mnt/mfs# mfssetsclass sclass1 dataX

dataX: storage class: ’sclass1 ’

root@client :/mnt/mfs#

It means that this directory, its subdirectories, files and so on will be stored according to
sclass1 policy.

Similarly, assign Storage class sclass2 to /mnt/mfs/dataY:

root@client :/mnt/mfs# mfssetsclass sclass2 dataY

dataY: storage class: ’sclass2 ’

root@client :/mnt/mfs#

It means that this directory, its subdirectories, files and so on will be stored according to
sclass2 policy.

For more information about assigning Storage Classes to files, refer to Section 3.2: MooseFS
Storage Class management tools – mfssclass.

Now on MooseFS Monitor (”Resources” tab) you can observe, that goal is set and it can be
fulfilled.

2.6.1 Creating files

In this step you will create some files in previously created directories (labelA and labelB)
to fill MooseFS instance with data. This operation may take some time. Issue the following
commands:

10

root@client :/mnt/mfs# cd dataX

root@client :/mnt/mfs/dataX# for i in ‘seq 1 35‘; do dd if=/dev/urandom of=

dd1G_$i.bin bs=1M count =1024; done

[...]

root@client :/mnt/mfs/dataX# cd ../ dataY

root@client :/mnt/mfs/dataY# for i in ‘seq 1 10‘; do dd if=/dev/urandom of=

dd1G_$i.bin bs=1M count =1024; done

[...]

root@client :/mnt/mfs/dataY#

Notice: These commands create approx. 90 GiB (45 GiB multiplied by goal 2) of data – 35 GiB
in dataX directory (RAW size: 70 GiB) and 10 GiB in dataY directory (RAW size: 20 GiB), so
adjust them for your testing purposes.

2.6.2 Filesystem balance with Storage Classes applied

Now you can observe, that filesystem is balanced according to Storage Classes policy: Chunkservers
with label A store the data data with goal 2A applied, similarly – Chunkservers with label B
store the data with goal 2B:

Notice, that the system looks ”unbalanced”, but it is, in fact, balanced as much,
as the requirements of Storage Classes allow it to be.

Also in tab ”Resources” number of inodes has changed:

2.7 Creation, keep, archive labels

In MooseFS 3.0 a possibility to ”plan” changing labels has been added.

Now you can ”tell” MooseFS (crate appropriate Storage Class), what label expression it should
use for file(s) while creating it (them), to what label expression change it after the creation and

11

to what label expression change it after a specific time since last modification.

You can define it while creating a Storage Class by mfsscadmin tool.

2.7.1 Synopsis

mfsscadmin [/MOUNTPOINT] create|make [-a admin only] [-m creation mode]

[-C CREATION LABELS] -K KEEP LABELS [-A ARCH LABELS -d ARCH DELAY] SCLASS NAME...

2.7.2 Creation labels

”Creation labels” (-C CREATION LABELS) – optional parameter, that tells the system to which
Chunkservers, defined by the CREATION LABELS expression, the chunk should be first written
just after creation; if this parameter is not provided for a class, the KEEP LABELS Chunkservers
will be used.

2.7.3 Keep labels

”Keep labels” (-K KEEP LABELS) – mandatory parameter (assumed in the second, abbrevi-
ated version of the command), that tells the system on which Chunkservers, defined by the
KEEP LABELS expression, the chunk(s) should be kept always, except for special conditions like
creating and archiving, if defined.

2.7.4 Archive labels

”Archive labels” (-A ARCH LABELS -d ARCH DELAY) – optional parameter, that tells the sys-
tem on which Chunkservers, defined by the ARCH LABELS expression, the chunk(s) should be
kept for archiving purposes; the system starts to treat a chunk as archive, when the last
modification time (mtime) of the file it belongs to is older than the number of days specified
with -d parameter.

2.7.5 How to set it?

For more information about the command to issue, refer to Section 3.1: MooseFS Storage
Class administration tool – mfsscadmin or issue man mfsscadmin.

12

2.8 Chunkserver states

Chunkserver can work in 3 states: normal, overloaded and (since MooseFS 3.0.62) internal

rebalance:

• Normal state is a standard state. In ”Servers” CGI tab you can see load as a normal
number, e.g.: 7.

• Internal rebalance state is a special Chunkserver state. It is activated when e.g. you
add a new, empty HDD to a Chunkserver. Then Chunkserver enters this special mode
and rebalances chunks between all HDDs to make all HDDs utilization as close to equal
as possible. In ”Servers” CGI tab you can see load as number in round brackets, e.g.:
(7).

• Overloaded is a special, temporary Chunkserver state. It is activated when Chunkserver
load is high and Chunkserver is not able to perform more operations at the moment. In
such case, Chunkserver sends an information to Master Server that it is overloaded. If
the load lowers to the normal level, Chunkserver sends an information to Master Server,
that it is not overloaded any more. In ”Servers” CGI tab you can see load as a number
in square brackets, e.g.: [77].

13

2.9 Chunk creation modes

While you store your data on labelled Chunkservers, a situation may occur that there is no
more space on appropriate Chunkservers or they are overloaded.

To decide what MooseFS should do when free space ends or when Chunkserver you want to
store data to is overloaded, you need to use creating chunks modes.

You can define these modes for each file, directory, it’s subdirectories and so on, because they
can be set (or modified) when you set the goal for your data.

There are three modes:

• loose mode (-m L flag to mfsscadmin) – in this mode the system will use other servers in
case of overloaded servers or no space on servers and will replicate data to correct servers
when it becomes possible.

• default mode (no flag or -m D flag to mfsscadmin) – in case of overloaded servers system
will wait for them, but in case of no space available will use other servers and will replicate
data to correct servers when it becomes possible.

• strict mode (-m S flag to mfsscadmin) – in this mode the system will return error
(ENOSPC) in case of no space available on servers marked with labels specified for chunk
creation. It will still wait for overloaded servers.

A table below presents MooseFS behavior for these modes:

Chunkserver is full Chunkserver is overloaded

Loose use servers with other labels use servers with other labels

Default use servers with other labels wait for available Chunkserver

Strict no write (returns ENOSPC) wait for available Chunkserver

You can observe current states in Resources CGI tab.

14

2.10 Preferred labels during read/write (in mfsmount)

It is possible to specify preferred labels for choosing Chunkservers during read and write oper-
ations at the MooseFS Client (mfsmount) side:

-o mfspreflabels=LABELEXPR

specify preferred labels for choosing Chunkservers during I/O

You can set different preferred labels for each mountpoint.

Preferred labels in MooseFS Client are a list (up to 9) of labels expressions, e.g. E1, E2, E3.

While a client performs a read operation, Master Server returns a list of chunks’ locations (in
random order) in the following form (CS means Chunkserver): CSa, CSb, CSc, ...

Each of CSx entry contains a list of labels assigned to specific Chunkserver.

Priority of each CSx is calculated as the minimum y value, where labels from CSx match
expression Ey. If no expression matches, the priority is set as a number of expressions +1.

The lowest number means the highest priority.

Then, the list of Chunkservers is sorted by priorities. The first Chunkserver from the list (which
has the highest priority / the lowest number) is used while reading.

If more than one Chunkserver has the same priority, Client picks the one that got the least
number of operations from this Client so far.

If a specific chunk read ends with an error, Client can use a chunk copy with lower priority
(greater number).

In case of writing, the list of Chunkservers is sorted similarly and data is written to Chunkserver
with the highest priority. The difference is, if more that one Chunkserver has the same priority,
the order form Master Server is used.

If no mfspreflabels is set, the order of list from MooseFS Master is used with no further
modifications.

15

Chapter 3

Storage Classes tools

3.1 MooseFS Storage Class administration tool – mfsscadmin

3.1.1 Synopsis

• mfsscadmin [/MOUNTPOINT] create|make [-a admin only] [-m creation mode] [-C

CREATION LABELS] -K KEEP LABELS [-A ARCH LABELS -d ARCH DELAY] SCLASS NAME...

• mfsscadmin [/MOUNTPOINT] create|make [-a admin only] [-m creation mode] LABELS

SCLASS NAME...

• mfsscadmin [/MOUNTPOINT] change|modify [-f] [-a admin only] [-m creation mode]

[-C CREATION LABELS] [-K KEEP LABELS] [-A ARCH LABELS] [-d ARCH DELAY] SCLASS NAME...

• mfsscadmin [/MOUNTPOINT] delete|remove SCLASS NAME...

• mfsscadmin [/MOUNTPOINT] copy|duplicate SRC SCLASS NAME DST SCLASS NAME...

• mfsscadmin [/MOUNTPOINT] rename SRC SCLASS NAME DST SCLASS NAME

• mfsscadmin [/MOUNTPOINT] list [-l]

3.1.2 Description

mfsscadmin is a tool for defining storage classes, which can be later applied to MooseFS objects
with mfssetsclass, mfsgetsclass etc.

Storage class is a set of labels expressions and options that indicate, on which chunkservers the
files in this class should be written and later kept.

3.1.3 Commands

• create|make creates a new storage class with given options, described below and names
it SCLASS NAME; there can be more than one name provided, multiple storage classes with
the same definition will be created then

16

• change|modify – changes the given options in a class or classes indicated by SCLASS NAME

paremeter(s)

• delete|remove – removes the class or classes indicated by SCLASS NAME paremeter(s); if
any of the classes is not empty (i.e. it is still used by some MooseFS objects), it will not
be removed and the tool will return an error and an error message will be printed; empty
classes will be removed in any case

• copy|duplicate – copies class indicated by SRC SCLASS NAME under a new name provided
with DST SCLASS NAME

• rename – changes the name of a class from SRC SCLASS NAME to DST SCLASS NAME

• list – lists all the classes

3.1.4 Options

• -C – optional parameter, that tells the system to which chunkservers, defined by the
CREATION LABELS expression, the chunk should be first written just after creation; if this
parameter is not provided for a class, the KEEP LABELS chunkservers will be used

• -K – mandatory parameter (assumed in the second, abbreviated version of the command),
that tells the system on which chunkservers, defined by the KEEP LABELS expression, the
chunk(s) should be kept always, except for special conditions like creating and archiving,
if defined

• -A – optional parameter, that tells the system on which chunkservers, defined by the
ARCH LABELS expression, the chunk(s) should be kept for archiving purposes; the system
starts to treat a chunk as archive, when the last modification time of the file it belongs to
is older than the number of days specified with -d option

• -d – optional parameter that must be defined when -A is defined, ARCH DELAY parameter
defines after how many days from last modification time a file (and its chunks) are treated
as archive

• -a – can be either 1 or 0 and indicates if the storage class is available to everyone (0) or
admin only (1)

• -f – force the changes on a predefined storage class (see below), use with caution!

• -m – is described below in ”Creation modes” section

• -l – list also definitions, not only the names of existing storage classes

3.1.5 Labels expressions

Labels are letters (A-Z – 26 letters) that can be assigned to chunkservers. Each chunkserver
can have multiple (up to 26) labels. Labels are defined in mfschunkserver.cfg file, for more
information refer to the appropriate manpage.

Labels expression is a set of subexpressions separated by commas, each subexpression specifies
the storage schema of one copy of a file. Subexpression can be: an asterisk or a label schema.

17

Label schema can be one label or an expression with sums, multiplications and brackets. Sum
means a file can be stored on any chunkserver matching any element of the sum (logical or).

Multiplication means a file can be stored only on a chunkserver matching all elements (logical
and). Asterisk means any chunkserver. Identical subexpressions can be shortened by adding a
number in front of one instead of repeating it a number of times.

Examples of labels expressions:

• A,B – files will have two copies, one copy will be stored on chunkserver(s) with label A,
the other on chunkserver(s) with label B

• A,* – files will have two copies, one copy will be stored on chunkserver(s) with label A,
the other on any chunkserver(s)

• *,* – files will have two copies, stored on any chunkservers (different for each copy)

• AB,C+D – files will have two copies, one copy will be stored on any chunkserver(s) that has
both labels A and B (multiplication of labels), the other on any chunkserver(s) that
has either the C label or the D label (sum of labels)

• A,B[X+Y],C[X+Y] – files will have three copies, one copy will be stored on any chunkserver(s)
with A label, the second on any chunkserver(s) that has the B label and either X or Y label,
the third on any chunkserver(s), that has the C label and either X or Y label

• A,A expression is equivalent to 2A expression

• A,BC,BC,BC expression is equivalent to A,3BC expression

• *,* expression is equivalent to 2* expression is equivalent to 2 expression

3.1.6 Creation modes

It is important to specify what to do in case when there is no space available on all servers
marked with labels needed for new chunk creation. Also all servers marked with such labels can
be temporarily overloaded. The question is if the system should create chunks on other servers
or not.

Answer to this question should be resolved by user and hence the -m option.

• By default (no options or option -m D) in case of overloaded servers system will wait for
them, but in case of no space available will use other servers and will replicate data to
correct servers when it becomes possible.

• Option -m S turns on STRICT mode. In this mode the system will return error (ENOSPC)
in case of no space available on servers marked with labels specified for chunk creation.
It will still wait for overloaded servers.

• Option -m L turns on LOOSE mode. In this mode the system will use other servers in case
of overloaded servers or no space on servers and will replicate data to correct servers when
it becomes possible.

18

3.1.7 Predefined Storage Classes

For compatibility reasons, every fresh or freshly upgraded instance of MooseFS has 9 predefined
storage classes. Their names are single digits, from 1 to 9, and their definitions are * to 9*.

They are equivalents of simple numeric goals from previous versions of the system. In case of
an upgrade, all files that had goal N before upgrade, will now have N storage class.

These classes can be modified only when option -f is specified. It is advised to create new
storage classes in an upgraded system and migrate files with mfsxchgsclass tool, rather than
modify the predefined classes. The predefined classes cannot be deleted.

3.2 MooseFS Storage Class management tools – mfssclass

3.2.1 Synopsis

• mfsgetsclass [-r] [-n|-h|-H|-k|-m|-g] OBJECT...

• mfssetsclass [-r] [-n|-h|-H|-k|-m|-g] SCLASS NAME OBJECT...

• mfscopysclass [-r] [-n|-h|-H|-k|-m|-g] SOURCE OBJECT OBJECT...

• mfsxchgsclass [-r] [-n|-h|-H|-k|-m|-g] SRC SCLASS NAME DST SCLASS NAME OBJECT...

• mfslistsclass [-l] [MOUNT POINT]

3.2.2 Description

These tools operate on object’s Storage Class name. This is an extended version of classic goal.
There are predefined storage classes provided as equivalents of goals 1 to 9 (names are simply
1, 2, ... , 9). Other classes can be created / modified / deleted etc. by administrator using
mfsscadmin tool.

• mfsgetsclass prints current storage class of given object(s). -r option enables recursive
mode, which works as usual for every given file, but for every given directory additionally
prints current storage class of all contained objects (files and directories).

• mfssetsclass changes current storage class of given object(s). -r option enables recursive
mode.

• mfscopysclass copies storage class from one object to given object(s).

• mfsxchgsclass sets storage class to DST SCLASS NAME of given objects(s) but only when
current storage class is set to SRC SCLASS NAME.

• mfslistsclass lists currently defined storage classes. -l option enables long format –
whole class definition is printed for each class, not only its name. For description of storage
class definition refer to mfsscadmin manpage.

3.2.3 General options

Most of mfstools use -n, -h, -H, -k, -m and -g options to select format of printed numbers.

19

• -n causes to print exact numbers,

• -h uses binary prefixes (Ki, Mi, Gi as 210, 220 etc.) while -H uses SI prefixes (k, M, G as
103, 106 etc.).

• -k, -m and -g show plain numbers respectivaly in kibis (binary kilo – 1024), mebis (binary
mega – 10242) and gibis (binary giga – 10243).

The same can be achieved by setting MFSHRFORMAT environment variable to: 0 (exact numbers),
1 or h (binary prefixes), 2 or H (SI prefixes), 3 or h+ (exact numbers and binary prefixes), 4 or
H+ (exact numbers and SI prefixes). The default is to print just exact numbers.

3.2.4 Inheritance

When new object is created in MooseFS, attributes such as storage class, trashtime and extra
attributes are inherited from parent directory. So if you set i.e. ”noowner” attribute and storage
class to ”important” in a directory then every new object created in this directory will have
storage class set to ”important” and ”noowner” flag set.

A newly created object inherits always the current set of its parent’s attributes. Changing a
directory attribute does not affect its already created children. To change an attribute for a
directory and all of its children use -r option.

20

Chapter 4

Common use scenarios

4.1 Scenario 1: Two server rooms (A and B)

Let’s assume that chunkservers with label A are in server room A, and with label B – in server
room B (divided exactly as in steps above):

Using Storage Classes, you can simply decide, which server room your data is stored to.

Notice: Slow link between the sites (server room A and server room B in above example) will

21

slow down I/O write operations to files with chunks stored in both sites due to synchronous
nature of I/O write operations. Because of that reason alone, it is recommended to have a very
fast connection between sites.

4.2 Scenario 2: SSD and HDD drives

Let’s assume, that chunkservers ts04..ts07 have SSD drives and chunkservers ts08..ts12 have
HDD drives. For example, you can label chunkservers with HDD drives as H, and with SSD
drives – as S:

You can configure Storage Classes, so that your frequently used data is stored on SSD Chunkservers
(e.g. Storage Class ssd), and data not accessed very often – on HDD Chunkservers (e.g. Storage
Class hdd).

You can also easily move some data (e.g. after end of the year) from SSD to HDD chunkservers
– you just need to change the Storage Class assignment from ssd to hdd for this data and
MooseFS will automatically take care of moving process.

Example: you have a directory named Reports2015 located on MooseFS mountpoint. This
directory and its subdirectories and files are used very often by a lot of processes. You want to:

• store this directory in four copies – these are very important files

22

• speed up access to this directory,

so you set up and define a Storage Class e.g. 4ssdcopies defined as 4S (four copies on
Chunkservers with fast, SSD drives) and assign it to the directory recursively. Issue the com-
mands below:

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs# mfsscadmin create 4S 4ssdcopies

create ; 0

storage class make 4ssdcopies: ok

root@client :/mnt/mfs# mfssetsclass -r 4ssdcopies Reports2015

Reports2015:

inodes with storage class changed: 5685

inodes with storage class not changed: 0

inodes with permission denied: 0

root@client :/mnt/mfs#

But year 2015 has passed, and now Reports2015 is used infrequently and you want to free some
space on SSD drives to store new data. So you want to move this directory, its subdirectories
and files to HDD drives and store it only in three copies.

You just need to set up and define a Storage Class e.g. 3hddcopies defined as 3H (three copies
on Chunkservers with HDD drives) and exchange the Storage Class for files which currently
have 4ssdcopies Storage Class applied with 3hddcopies Storage Class:

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs# mfsscadmin create 3H 3hddcopies

create ; 0

storage class make 3hddcopies: ok

root@client :/mnt/mfs# mfsxchgsclass -r 4ssdcopies 3hddcopies Reports2015

Reports2015:

inodes with storage class changed: 5685

inodes with storage class not changed: 0

inodes with permission denied: 0

root@client :/mnt/mfs#

MooseFS takes care of moving process and your data is safe and accessible during moving from
SSD to HDD drives (Chunkservers).

23

4.3 Scenario 3: Two server rooms (A and B) + SSD and HDD
drives

As shown in the picture above, this Scenario is a combination of Scenario 1 and Scenario 2. Let’s
assume, that in two server rooms you have two types of chunkservers: some of them containing
HDD drives, some – SSD drives.

Now you want to store e.g. frequently used data on chunkservers with SSD drives and data
used from time to time – on chunkservers with HDD drives. You also want to have a copy of
all data in each server room.

In scenario presented above, you need to set the following labels:

• Server room A, SSD chunkservers: labels A and S,

• Server room A, HDD chunkservers: labels A and H,

• Server room B, SSD chunkservers: labels B and S,

• Server room B, HDD chunkservers: labels B and H.

Then you need to set up and define appropriate Storage Classes and apply them to your files.

Directory used very often named Frequent – you want to store it in 2 copies on SSD drives

24

(Chunkservers): one copy in server room A, another in server room B.

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs# mfsscadmin create AS ,BS frequent

create ; 0

storage class make frequent: ok

root@client :/mnt/mfs# mfssetsclass -r frequent Frequent

Frequent:

inodes with storage class changed: 564513

inodes with storage class not changed: 0

inodes with permission denied: 0

root@client :/mnt/mfs#

Directory used from time to time named Rare – you want to store it in 2 copies on HDD drives
(Chunkservers): one copy in server room A, another in server room B.

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs# mfsscadmin create AH ,BH rare

create ; 0

storage class make rare: ok

root@client :/mnt/mfs# mfssetsclass -r rare Rare

Rare:

inodes with storage class changed: 497251

inodes with storage class not changed: 0

inodes with permission denied: 0

root@client :/mnt/mfs#

So your directory Frequent (and its subdirectories and files) is stored now on Chunkservers
which have both A and S labels and on Chunkservers having both B and S labels.

Your directory Rare (and its subdirectories and files) is stored now on Chunkservers which have
both A and H labels and on Chunkservers having both B and H labels.

You also want to store your directory named Backup in three copies. You want to store one
copy in server room A on SSD chunkservers, and two copies in server room B, either on HDD
or SSD chunkservers. Issue the following commands:

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs# mfsscadmin create AS ,2B[H+S] backup

create ; 0

storage class make backup: ok

root@client :/mnt/mfs# mfssetsclass -r backup Backup

Backup:

inodes with storage class changed: 879784

inodes with storage class not changed: 0

inodes with permission denied: 0

root@client :/mnt/mfs#

The labels expression AS,2B[H+S] is a multiplication and sum of labels. For more information,
refer to Section 3.1.5: Labels expressions of this document.

For more information about mfsscadmin and mfssetsclass, refer to Chapter 3: Storage
Classes tools of this document.

Notice: Slow link between the sites (server room A and server room B in above example) will
slow down I/O write operations to files with chunks stored in both sites due to synchronous

25

nature of I/O write operations. Because of that reason alone, it is recommended to have a very
fast connection between sites.

4.4 Scenario 4: Creation, Keep and Archive modes

Let’s assume you want to write fast a big amount of important data and your computer is
located closer to server room A than to server room B. So you want to create chunks in server
room A, on SSD chunkservers, in two copies (-C 2AS).

But your goal is to have one copy of this data in server room A, and the other one in server room
B, both on SSD chunkservers. MooseFS will take care of the replication process (-K AS,BS).

And finally, after 30 days, you want MooseFS to move this data to HDD chunkservers in both
server room A and B (-A AH,BH -d 30).

First of all, create a directory:

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs# mkdir ImportantFiles

Then, set up and define a Storage Class, e.g. important, defined as -C 2AS -K AS,BS -A

AH,BH -d 30 and assign it to the newly created directory directory:

root@client :~# cd /mnt/mfs

root@client :/mnt/mfs# mfsscadmin create -C 2AS -K AS ,BS -A AH,BH -d 30 important

create ; 0

storage class make important: ok

root@client :/mnt/mfs# mfssetsclass important ImportantFiles

ImportantFiles:

inodes with storage class changed: 1

inodes with storage class not changed: 0

inodes with permission denied: 0

root@client :/mnt/mfs#

And that’s all! Now you can write the data to this directory.

Your data will be safe, stored very fast on SSD chunkservers in server room A while creating
(you are close to this server room), copied by MooseFS also to server room B and after 30 days
– automatically moved to HDD chunkservers.

26

	Introduction to Storage Classes functionality in MooseFS 3.0
	What is a Storage Class?
	What are labels?

	How to use Storage Classes?
	Machines configuration
	Example of MooseFS installation without Storage Classes
	Labelling Chunkservers
	Creating Storage Classes
	Listing Storage Classes
	Assigning Storage Class to files / directories
	Creating files
	Filesystem balance with Storage Classes applied

	Creation, keep, archive labels
	Synopsis
	Creation labels
	Keep labels
	Archive labels
	How to set it?

	Chunkserver states
	Chunk creation modes
	Preferred labels during read/write (in mfsmount)

	Storage Classes tools
	MooseFS Storage Class administration tool – mfsscadmin
	Synopsis
	Description
	Commands
	Options
	Labels expressions
	Creation modes
	Predefined Storage Classes

	MooseFS Storage Class management tools – mfssclass
	Synopsis
	Description
	General options
	Inheritance

	Common use scenarios
	Scenario 1: Two server rooms (A and B)
	Scenario 2: SSD and HDD drives
	Scenario 3: Two server rooms (A and B) + SSD and HDD drives
	Scenario 4: Creation, Keep and Archive modes

